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List of Symbols

The item in parentheses indicates the equation number or section where the

symbol first appears.

a,b,c coefficient matrices of the nonconservative Euler equations, (App. C)
c speed of sound, (9); chord length, (Sect. VI)

e energy per unit volume, (1)

f,g,h flux vectors in Cartesian coordinates, (1)

i, indices representing £,n,; directions, (4b)

i,3,k representative curvilinear coordinates, (9)

L,m indices representing elements of the flux Jacobian matrices, (6b)

n normal to cell face, (2c¢); time level, (5)

p statie pressure, (1)

q conserved dependent variables in Cartesian coordinates, (1)

q nonconserved dependent variables, (C3)

t time, (1)

u,v,w velocity components in Cartesian coordinates, (1)

u; boundary layer friction velocity, (Sect. IV)

X, ¥,2 Cartesian coordinates, (1)

X representative element of the dependent variable vector, (23)

A,B,C flux Jacobian matrices, (6b)

A representative element of the coefficient matrices, (21)

CP pressure coefficient with respect to freestream conditions, (Figures)
F,G,H flux vectors in the transformed equations, (2)

I,J,K indices for computational grid lines, (Sect. VI)
H shape factor, (Sect. IV)

I identity matrix, (8b)
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u,v,w

X1,X2

Jacobian matrix of the transformation from Cartesian to curvilinear
coordinates, (2)

representative flux vector (App. C)

representative flux Jacobian matrix (App. C)

Mach number, (31); 9Q/33, (C4)

eigenvectors of nonconservative Euler equations, (C11)

conserved dependent variables in the transformed equations, (2)
residual, (13)

Reynolds number based on mean aerodynamic chord, (Sect. VI)

cell surface area, (2c¢)

transpose, (1); eigenvectors of the conservative Euler equations, (C10)
contravariant veloeity components, (2)

representative unknown dependent variable vector, (21)

unknown dependent variable vector in the two pass algorithm, (14)
angle of attack, (Figures)

ratio of specific heats, (1)

spatial difference operation, (3)

boundary layer displacement thickness, (Sect. IV)

curvilinear coordinates, (2)

contravariant veloeity, k,utk, v+k,w, (CT)

y

representative coefficient matrix for the nonconservative Euler
equation, (App. C)

eigenvalues, (9)

cell volume, (2a)

density, (1)

time in transformed equations, (2)

2+ w?y, (€7
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difference operator (usually first order), (2a)

diagonal matrix of eigenvalues, (C15)

del operator, (2a)

freestream conditions, (31)

( )/|vk], (C17)

boundary layer edge conditions, (Sect. IV)

vector quantity

terms associated with positive or negative eigenvalues, (10e)

equivalent incompressible boundary layer terms, (Sect. IV)
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I. Introduction

During the mid 1970's a computer program for the solution of the
Euler equations was developed by researchers at Sverdrup Technology, Inc.
for transonic and supersonic applications. This program, known as ARO-
1,(15’16) was an explicit, finite volume formulation based on McCormack's
predictor-corrector algorithm. From this code has evolved a long line of
Euler equation solvers whose current members now share only the finite
volume formulation with the prototype. One of these current programs is
the subject of the following presentation.

The code of interest here goes by the (rather colorful) name BROWN
MULE. It is a three-dimensional, time accurate, finite volume Euler
solver (as its progenitors) with extensive refinements.(1’2’3) The solu-
tion scheme is an implicit, upwind, split~-flux vector formulation in which
the flux vectors are divided into subvectors based on the signs of the
eigenvalues. Prudent approximate factorization then leaves only a system
of block bidiagonal equations to be solved which is readily accomplished.
The upwind scheme used here requires no artificial dissipation and is
conditionally stable in three-dimensions. Furthermore, because the pres-
ent interest is in steady state solutions, local time stepping can be used
thereby improving the convergence rate., The resulting program is easy to
use, requiring only a minimum of input variables and parameters, and
achieves engineering quality answers in reasonably short machine time. A
disadvantage is the relatively large memory needed to store the flow

variables and split flux vectors, although with the latest generation of




supercomputers this is not a serious limitation. Further history and
background concerning BROWN MULE and its family may be found in References
1 and 3.

As part of the present research, a version of BROWN MULE was devel-
oped to include calculation of viscous effects, including effects of
moderate flow separation. This is accomplished through an unique inverse
integral boundary layer solution which uses an analytical description of

the velocity profile.(1o)

This profile and other supporting relationships
are based on curve fits to experimentally determined compressible turbu-
lent boundary layers including separated layers. The viscous effects are
imposed upon the flow through a surface source model which is simply imple-
mented as a modified solid wall boundary condition. These viscous calcu-
lations are quite efficient and 1impose negligible time and storage
penalties on the overall program so that the capability of the program is
significantly enhanced at little cost.

This paper explains the theoretical and numerical bases of the pro-
gram with emphasis on the logic behind the equation development. In
addition, the program is fully deta;led 30 that a user can quickly become
familiar with its operation.

Because this code is intended for computation of complex flow fields,
an application to transonic flow past a wing/body configuration represen-
tative of a modern wide body turbofan transport is also presented. A

companion paper(17) describes in detail the explicit vectorization of this

program on the NASA Langley Research Center VPS-32.



II. Formulation of the Numerical Procedure

Governing Equations

The governing equations for inviscid flow, the Euler equations, take
the form
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This form of the equations (other forms are possible with algebraic ma-
nipulation) is said to be in strong conservation form (M because the funda-
mental properties conserved in nature - mass (p), momentum (pu, pv, pw) and
energy (e) - always appear as distinet entities in the equations. The

transformation (2) (outlined in Appendix A) using curvilinear coordinates,
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Discretization

To discretize (2), let us integrate equation (2) over the volume of a

computational cell,
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The mean value theorem of calculus permits us to write
|

J 3 AQ (2b)
ot dv = v(AT)
v
AQy . < aQ c ey s
where (—;) is an effective average value of FPy within the cell
volume v.

->
The flux terms combine to give SV'Fdv, where V is the divergence operator

(in the curvilinear coordinate frame) and F is a vector with components F,



G and H.

The divergence theorem then permits us to write

Jv-ﬁd - jﬁ-ﬁds (2¢)
s s

where S is the cell surface and ; is the unit outward normal.
The flux terms - F, G, H - transport fluid properties across £,n,; faces
of a cell, respectively, so that (2¢) becomes

> >
nFas = (F_, - F, Janag + (G, -G, Jagaz + (H__ - H, )JAgan (2d)

Js out in out in out in

where effective values of F, G and H are used on the cell

faces. Using (2b) and (2d) in (2a), letting § = ( ) , realizing

out = ( din

Av = AEAnAz, and dividing through by Av gives

B.oE.me
Equation (3) might have been obtained from equation (2) by simply approxi-
mating the partial derivatives in (2) with suitable differences. However,
the procedure [(2a) through (2d)] here shows more clearly the finite volume
nature of equation (3) and, therefore, of the entire problem. The volume
approach 1is, in general, a more physically meaningful approach and is
recommended whenever the option for this approach arises. It is now neces-
sary to precisely define the individual operators and terms in equation
(3) and to formulate the precise numerical problem to be solved. The §
operator is the central difference operator notation and means, e.g.

8 F = Fiviso " Fics2 (4a)



To interpret this relation we realize that the cell center is at i, so
that 1 + 1/2 and i - 1/2 signify cell faces, and thus the flux vectors
(F, G, H) are evaluated at cell faces as dictated by the finite volume
approach. The computational coordinates (g, n, g) correspond directly to
the cell indices (i, j, k) so that Af = An = Az = 1 and (3) can be written

as(3)

AQ = -AtT (8;F + st + 8§, H) (4b)

We will be advancing the solution in time., The most recently computed

time step is the n step, or level. Equation (4b) might then be written as

AQ" = -at (8, F™ e 5.¢™1 4 5 w™T) (5)
i J Kk
with Q" = Q™1 - Q"
The unknowns are really Qn+1, but it is convenient to work with AQ" as the

unknowns because eventually, as we get closer to the final solution, aQM
will go to zero. This fact will be used to improve our computational
efficiency.

Linearization

Now, the flux vectors are explicit functions of Q, so that we can

write(#:5,6)



The flux vectors are nonlinear in the dependent variables, Q or AQ. For a
manageable numerical solution they must be linearized, which is accom-
plished by dropping terms of order (AQn)2 and higher. The derivatives
such as 9F/9Q, which appear in the expressions for the flux vectors, form
matrices known as the Jacobian matrices for each flux vector. Because
equation (1) or (5) actually represents 5 distinet equations, there are 5

elements to each of Q, F, G and H and the flux Jacobian matrices therefore

each contain 25 elements,

n _ oFD n _ 36! n _ oHD
L, Ble = _ % Ckm =

T, =1,5,m=1,
3Q,, 3Q, aq,,

With this notation, the linearized flux vectors become,

n+1 n n n n n n n n n n n

F1 = F1 + A11 AQ1 + A12AQ2 + A13AQ3 + A1uAQu + A15AQ5

. (6b)
n+1 n n n n n n n

Fy @ = Fg * Ag AQ) + AL8Q, + - * A55805

with similar expressions for ¢! ang HO*Y,

Using (6b), and the companion expressions for G and H, in (5) gives

AQ" = -AT(GiF? +

n n n n n n n n
1 §; (A11AQ1+...+ AT AQT)) + 5.G) + Gj(B11AQ1+...+B AQY)

15775 J 155

n n n n n

. + 8 H+ Gk(C11AQ1+...+C15AQS]
. (7)

n_ _ n n ,.n n,.n n n ,.n n,.n

AQ = At(éiFs + 8y (A51AQ1+...+ ASSAQS] + 8,65+ Gj(Bs1AQ1+...+855AQ5)

n n n n n

+ 8 Ho + Gk(CSTAQ1+...+C55AQS



Equations (7) are an implicit set of linear equations for the unknowns
AQ". They are implicit in two ways. First, each AQ" depends on all five
AQ”, giving a system implicit with respect to the dependent variables at a
given location in the grid. Second, the difference operator introduces

neighboring values of the unknowns (recall, for example,

n+1 n+1 n+1 s
) Fi = 1+1 Fi'l thus giving a
2 2

spatially implicit system as well, Equations (7) can be algebraically

rearranged into the following matrix equation,

n n n n ‘]A n
1+Ar(6 A +5 4B 11 akc11) 1(61A12+6JB12+6kC12)...A1(61A15 5 4B 15 +6,C15 0,
n
. AQ,
n
. A
%
(8a)
. aQ?
4
n n n n n n n n
At(diA51+6st1+6kC51]AI(GiA52+6JB52+6kC52]...1+AT(61A55 5B 55 GkCSE]AQ 5
_ n n n n T
= -at{ (s, F1+6JG1+61H1) (51F2+ 5jG2+6kH2)...[c F5+6 G5+6kH5)}
or, in compact notation
n n n n
(I+A161A-+ATGJB-+A16kC-) AQ'= Ar(GiF +8,G7+0 H ) (8b)

The dot indicates that the difference operator acts on the products AAQn,
BAQ™ and caQ”.

Equations (8) are the expression of the Euler equations which are to
be numerically solved. It might be wise, at this point, to review the

basic steps leading to (8). We start with the Euler equations in conser-



vative differential form in Cartesian coordinates, equation (1). These are
transformed to curvilinear coordinates, equation (2)." The transformed
equations are discretized by integrating over a cell volume to yield
equation (3). Details of the discretization are introduced and finally
the flux vectors are linearized with respect to the dependent variables.
The result of these last operations is equation (8). Thus we see that (8)
is a discretized, linearized, finite volume formulation of the Euler equa-
tions.
Eigenvalues

The problem now becomes one of solving the system of equations in (8).
Various schemes are possible; the scheme used here 1s centered on the
notion that information is propagated through a flow field in certain
preferred, or characteristic directions, and with characteristic veloci-
ties. (The word 'characteristic', as used here, has a double meaning.
The first meaning may be taken as 'particular' and is motivated by physi-
cal arguments, while the second meaning stems from the mathematical prop-
erties of systems of partial differential equations.) Physically,
information is propagated via bulk fluid motion and via acoustic waves.
Acoustic waves travel in all directions between molecules at the local
sound speed; the molecules, meanwhile, are being convected, on the aver-
age, at the bulk flow velocity. Thus, the net acoustic wave speed 1ls the
sum of the sound speed and bulk velocity. The fluid velocity and the net
acoustic wave speeds are the characteristic velocities., These concepts
are mathematigally implemented through consideration of the eigenvalues of

the flux Jacobian matrices.

10



The eigenvalues of the flux Jacobian matrices are the mathematical
characteristics of the system represented by (8). For the present problem
they turn out to be identical to the characteristic velocities with which
information is propagated in the flow. (The theory of characteristics is
descrivbed, at length, in Ref. T7; the operations required to find the
eigenvalues of the matrices here are outlined in Appendix C). Each flux
matrix is a 5 x 5 system and has, therefore, 5 eigenvalues
£ A n’ A c’ i=1, 5 with (§,n,z) referring to (4,B,C), respectively.

The eigenvalues for the flux Jacobian matrices here are

1.2 .3

Mo = M= A = ku s kv + ko

TN

Ao = At c|Vk| (9)
A2 = A - ovk]

K K

where k = gE,n,z for F,G,H respectively, ¢ is the speed of sound and
|Vk| - (kz . k2 + k2)1/2.

X ¥y z
Interpretation of the eigenvalues as measures of the velocities at which
fluid properties and information are propagated through the flow field is
evident in these expressions.

Flux Vector Splitting

To take advantage of the physical significance of the eigenvalues, we
write the flux vectors as a linear combination of, so-called, subvectors
which have as coefficients the five eigenvalues of each vector.(1’2’3)

Hence

11
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= J . 2 3 )
Fy §=1A€fij Agfip *Agfy AL Y AL 20, 1= 1,5 (10a)

and similarily for

Since, xk1 = Ak2= A k3’ then the first three terms can be combined together
to give F, = A1f + Auf + A5f and similarly for G and H (10b)
i £ i g id £ i5 y

A very important sequence of steps is now undertaken. Recall that the
equations (8) are spatially implicit. This implicit aspect of the equa-
tions can be removed as follows. The flux vectors F,G,H, by (10b) are
sums of subvectors based on the eigenvalues. These subvectors can be
grouped together according to whether their eigenvalue coefficients are
positive or negative, so that

+ =

* + H (10e)

F=F"+F,G=G6" +G andH =H
where, for example, F' is a subvector made up of the Af terms which have
A>0 and F is composed of the remaining Af terms (with A<0).

A simple physical idea motivates the above decomposition of the flux
vectors 1into components with positive and negative eigenvalues. Because
the eigenvalues are the characteristic velocities of information propaga-
tion, then their sign indicates in which direction information is carried
through the flow field. For example, suppose § increases to the right.

Then, 1f A is positive this means it is carrying information to the

right. Conversely, a negative value of Ag indicates information moving

12



to the left. Now F represents the actual transport of information through
the flow. Since XE can be positive and negative, then F can transport to
a cell from both the left and the right. A similar argument applies to G
and H so that, in general, information reaching a cell comes from all
surrounding cells. The surrounding cells, themselves, contain unknown
qualities so that the problem is spatially implicit; the solution at each
cell depends on the solution in all the surrounding cells. However, if we
decompose the flux vectors into components with positive and negative
eigenvalues then we can isolate contributions to a cell due to the flux
from any particular direction. The ability to isolate flux contributions
is used to develop a numerical algorithm which, at each stage in the
calculation, involves only flux terms transporting known quantities into
each cell and thereby removes the spatially implicit nature of the equa-
tions.

Returning now to equation development, we observe that each of these

new subvectors has a Jacobian matrix associated with it, that is

+ IF+ - 3F- + 3G+ - G- + 9H+ - _(9H~
A =(3—Q. ) »A =(3—Q- ) »B =('ﬁ ) +B =('56 ) »C 5(36 ) »C "(BQ ) (11)

These new subvectors can also be linearized exactly as the entire vector

was linearized to yield equation (6b),
(F+)n+1 = [F+)n + (§§+)n (Qn+1— Qn] and so on for the other subvectors.

We now take this linearization plus equations (10) and (11) to form an

equation analogous to (8),

13



(1 + AraiAf + ATS A + ArajBf + ArsjBT + Axakcf + Arskc?)AQ“ -

~ At (8,F +6,F +68G +8G +6H +68H) (12)
T % i j J K k

Approximate Factorization

Equation (12) is a block tridiagonal system and is still implicit,
both spatially and with respect to the dependent variables at a given
point. To eliminate the spatial implicitness, an approximation to equa-
tion (12) is formed via approximate factorization,(8)

(I + At8 A + AT6 B+ + A18,C+) (I + AtS.A- + AT8 B+ + At8 C+) AQ" = -atR™
i j K i j K

(13)

A - -
where R" = residual = (§.F + 6. F + 6.6 +8,6 + &8 H + &1 )"
i i J J K k

In this form, terms of order (AT)2 appear on the left hand side which are
not in the original equation (12). Consequently this formulation is, at
best, second order accurate in time. We solve equation (13) here with the

two step scheme

+ + + 1 n
(I + A1S A + AT.B- + AT6 C-J X = -ATR
1 J k
o " - 2 1
(1 + ATGiA. + ATGjB° + ATakc.) X< = X (14)
AQn - x2

Final Equations

The algorithm in equation (14) is now illustrated. Consider the first

equation multiplied out,

x! ATGI(A+X1) + ATGJ(B+X1) + ATGK(C+X1) = ~AR"

and write out the finite difference operations using a first order spatial

14



difference.

1 +1 - +1 +1 - +1
T O P O R PR T L I PR
+.1 _ +.1 - n
+ at(CX )i’j,k at(cx )i,j’k_1 ATRY S\ (15)

The flux matrices (A+,B+,C+) are functions of the cell metries and the
dependent variables. The metrics are evaluated at the cell faces indi-
cated by the subscripts appearing in equation (15). The dependent vari-
ables to be used In evaluating the flux matrices are determined based on
the facts that (1) this is a cell centered, finite volume scheme so that
the dependent variables are taken as constant within a cell, and (2) the
matrices (A+,B+,C+) involve only positive eigenvalues and represent trans—
port in the positive (&,n,z) directions only. For example, considering
the & flux through cell (i,j,k), the flux in comes from cell (i-1,3j,k)

while the flux out is from cell (i,j,k), which means we use

n to evaluate (A+X1). and Q? to evaluate (A+X1).

9,3,k 1,3,k 1-1,3,k 1-1,5,k"

To show this we will express the flux matrices as functions of the depend-
ent variables whose indices indicate the locations at which they are

evaluated. Equation (15) now becomes

Xl,j,k * AT[A+(Q?,j,k)]i,j,kxl,j,k - AT[A+(Q?-1,J,k)]i-l,j,kx1-1,j,k
RGN PR SN N PR PR S R
* AT[C+(Q?,j,k)]i,j,kxl,j,k B AT[C+(Q?,J,k-1)]i,j,k—1x1,J.k-1

= ‘ATR?,j,k (16)

15



or rearranging,

+¢.Nn +r.n e n 1 _ _a.pn
L T B T L C O ) PR LS S T AR
+..n 1 +..n 1
- LA CHIERD ) PRI SR .51 LI ASIPER) PP Sy
+..n 1
farlen @y 5 el 5 er®e 5 e am

Examining equation (17) reveals that if we start at the lowest index
boundaries and advance in the direction of increasing (i,j,k) consistent
with the positive eigenvalues, then the right side of (17) is always known

and therefore the unknowns, X} can be solved for directly. (The

2 Js K’
boundary conditions supply the values for the first cell,) This solution
process is referred to as a forward pass, in that we march through the
computational grid in the direction of increasing (i,j,k). The problem is

no longer spatially implicit. Each step does, however, require the solu-

tion of a5 x 5 system similar to equation (8a) which expresses the inter-

"3

elation among the Q's at each point. Formally, equation (17) represents
a lower block bidiagonal system which can be solved directly by forward
substitution, in contrast to the fully implicit block tridiagonal system
of equation (12).

The second equation in (14) is treated in exactly the same manner as
above with the exception that negative eigenvalues are used. This means
the transport is in the negative (£,n,z) directions and that the dif-

ferencing proceeds in the negative (i,j,k) directions. For example con~

16




sidering the £ flux through cell (i,j,k), the flux in crosses face (i,J,k)
but comes from cell (i+1,j,k) while the flux out crosses face (i-1,j,k)

but comes from cell (i,j,k). This gives

2 =(AN 2 - —ran 2
R LN G ) PR ot i L LI C/UIN ) FERS Supa
=(aN 2 _ =(an 2
R P RN L LA RS R
+ atfcT(Q? ), . X2 - acfc(Q? )] 2

1,3,k¢ 1771, 3,651, 3, k1 1,3,k791,3,k-1%1, 3,k

= Xi,5,k (18)

or, rearranging

{1 - AT[A_(Q?,j,k)]i—1,j,k - AT[B—(Q?,j,k)]i,j41,k- atfc (Qi,j,k)]i,J,k-1}

2 1

_ - &, ..n 2 - -cn
IR TLR S L L CHRID ) P Ry U L C /S VORn ) P
2 - =r N 2
SR L CAPRDL IR I e (19)

In equations (16) through (19) the indices on Q" and X indicate the loca-
tion at which these quantities are evaluated while the indices appended to
the brackets denote the faces for which the metrics are to be evaluated.

Equation (19) represents an upper block bidiagonal system for the unknown

vector X? This can be solved directly for the unknowns in a backward

3ok’

17



pass starting at the highest index boundaries and solving in the negative
(i,j,k) directions since, at each step, the i+1, j+1 or k+1 values of G
are known. Again, a 5x5 system similar to equation (8a) must be solved at
each (i,j,k) location. Appendix B provides a more complete explanation of
the hierarchy of systems embodied in equations (16) through (19).

With the solution for X° now available, the last of equations (14)
provides the desired solution vector AQ", which, in turn, provides the de-
pendent variable vector at the n+!1 time level,

Qn+1 = Qn + AQH (20)

18



III. Solution Procedure

Problem Statement

The solution process can now be presented. The problem to be solved
is the sequence of equations in (14) which, when the finite difference
operations are written out, become gquations (16) and (18). As described
in Appendix B, these equations are actually block bidiagonal systems of
equations which might be schematically represented (using the first of

equations (14)) by

E 0 0 0+ 0 | —k{w ':&1,;:

P 0 0 0 X5 R,

0 Agp  1+Agg 0 0 X3 Ry

0 0 Ay  1*Ay, O Xy | = -at Ry |1
0 0 0 0 : :
| 0 0 0 0 cer App | | Xp | Ry

where the subscripts refer to spatial position and n is the total number
of cells in the computational grid. This system is solved directly and

quite simply by forward substitution marching through the grid. That is,

X=X
Ay X, + (1+A22)X2 = -AR, => (1+A22)X2 = ®ATR, - A, X,
A_X +A__)X_. = -AtR. => (1+A__)X, = -ATR, - A_.X 22
go¥o * (1#A53)X5 = —atRy => (14Ag )Xy = ~atRy = Ao, (22)

+ (1+A_)x_ = -atR_=> (1+A_ )X = -AtR_~ A
nn’ n n nn’° n n

Ann—1xn—-1 nn-1xn-1
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But this set of equations is exactly equation (17) (or (19) for the second
step). Therefore we see that the rearrangement from (16) to (17) or (18)
to (19) is, in fact, the solution of the block bidiagonal system. The
value of X in each cell is determined by X in the preceeding cell and R.
What, then, does the program do? We must realize that each X in (17)
is actually a vector, X = (x1,x2,x3,xu,x§)T; and each equation in (17) is

actually a 5x5 system of equations of the form

N -1 I 7 [ n ]
AL A L Mgl 1y Ryg + (Bgqxg * eoe s A15"5)i—1
Aoy T*A, X,
= AT (23)
L_A51 sl 1% L_R5i + (agyxg + e +A5'5"5)1.—1_

where the number subscripts now refer to the individual Q's (p,pu,pv,pw,e)
and i and i-1 refer to spatial positions. This system must be solved for
each cell in the computational grid. It is the construction of the indi-
vidual terms in this 5x5 system and then the solution of this system, for
every cell, which is the essential function of the computation.

Doolittle's Method

The 5x5 linear systems of equations are solved here using Doolittle's

method. This method(g) is one of a family of techniques in which the

linear system AX = b is solved by first factoring the coefficient matrix

into lower~triangular and upper-triangular terms, L and U, such that LU =

- >
A and LU§ = E. This last expression is rearranged to give U; = L 13 or Lx
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13 which can be solved directly for ; by backward or forward substi-

=U
tution. The aspect of this scheme which is particular to Doolittle's
method is that the terms on the diagonal of the L matrix are all 1. As
shown in Appendix B, the 5x5 system involves unknown quantities at the
cell in question and the known solution from a neighboring cell, The
backward or forward substitution required to find the unknowns from the
known solution is a recursive relation which prohibits vectorization (on
current vector processors) in the direction of the substitution. However,
a vector solution can be effected by vectorizing along a computational
line normal to the backward or forward substitution directions. Such
vectorization has been implemented on a variety of vector processors
(Cray-1S, Cray X-MP, VPS-32) so that totally vectorized routines for

solving these linear systems with Doolittle's method are available.

System Details and Procedure

In order to properly understand the computational procedure let us
examine some of the details of the 5x5 system. The first equation in the
system is

((1+A”)x1 P ALK, t ALKt ALK ¢ AKX )i = -ATR

1272 1470 1575 11

UGPSR WP Rig¥s * Apxy * A15%5) 14 (24)
Writing out the A's and R's (see equations (17) and (13)) we have
+ + +
A, =at(al o+ 8%+ ¢t ) = ar (%F s 30 4 M) (25)
m Lm m m - - =
3q, 3q, 39,
and
n + - + - + -
Rl = Gin + 515'2 + GJGZ + GjGR + SkHl + GkHl ' (26)
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where £ = 1,5,m = 1,5 and the flux vectors (F+, see, H+) are functions of
of (01,02,Q3,Qu,05) = J(p,pu,pv,pW,e) (see equations (2)). 27)
Recall that the flux vectors are evaluated at the cell faces; this evalua-
tion requires that a spatial extrapolation of the Q's from the cell cen-
ters to the faces be performed. In order to maintain the second order
spatial accuracy of the overall computation it is necessary to use a
two—point extrapolation for the Q's which are used to evaluate R on the

right hand side of the 5x5 system. This extrapolation (see Ref. 1) is

L .
Q = 1'5Qi,j,k 5 0'501—1,j,k
(28)

R -
Q = 1'5Qi+1,J,k 0'5Qi+2,j,k

depending on which of equations (14) is being considered. A one point
extrapolation is sufficient on the left hand side.

The flux vectors (F,G,H) required in this computation are in the form
of the subvectors (Ff,Gt,H¥), The discussion concerning equation (10)
describes qualitatively how the flux vectors are split into terms (or
subvectors) having the eigenvalues as coefficients and how they are
further divided into the subvectors having positive or qegative
eigenvalues as coefficients. A detailed description of this splitting
(and the general eigensystem for the Euler equations) is presented in

Appendix C. From the development of Appendix C the flux vectors are

= C16b
K XkK1+AkK + A K | (C16D)
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— — — — ——
o] p e
pu pu+pc§x pu—pcix
¥-1 J ~ J ~
K1 = JY pv K2 == pv+pcky K3 =35 | Pv pcky (c17)
pw pw+pckz pw—pckZ
2o €+P+905k e+p—pc5k
Y1 L — L _
with
K=F,GH when kK = £,n,z
pc® + Y((Y=1)e=ps), ¢ = "—L (uP+v2eu?), B, = K utk_v+k_w (CT)
> k b4 y z
1 y 5 L, _ 2 2 2.1/2
A= 8, A = ec+c|Vkl, A= 8, |V, Vk (kx+ ky+ kz) (C9)

(") => divide by|Vk|

Appendix D describes the construction of the flux Jacobian matrices
(A,B,C) which are required in this computation. The elements of these
matrices are formed by a straightforward differentiation of the spiit
flux vectors, after the flux vectors have been written as explicit
functions of the conserved variables, Q. One difficulty associated with
forming the flux Jacobians is that the flux vectors become long, unwieldy
expressions when written in terms of the the conserved variables. Another
tedious aspect of the Jacobian computation 1is properly assigning
contributions to the positive and negative components. This assignment
must be done separately for each cell and each time step. Because of the
length of the expressions for the flux Jacobian elements, it is not

appropriate to write them out in this presentation.
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The time step At is based on the maximum allowable time step in each
cell volume in order to accelerate convergence for steady state solutions.

The time step 1s determined at each point in the grid by (see Ref. 1)

ATEATnATC
Ar= —% E T, N3
AT Arn + AtPAT” + AT At
with o = SEEAK o gong, 0e 1,05 (29)
max[k ]
) k

To express this in a more convenient form introduce short hand notation

for the maximum eigenvalues Ak = m:x |Atl and substitute the expression
m
for Ark into At to give
- AEANAZ 1
At = CFL Ke Ay A AEAn + AEAT  + AnAL
m "m °m Xe X T ) X
m "m m °m "m ‘n
Simplifying yields
_ AEANAL
At = CFL Texmi T+ Bedeh .+ AmATx,
*m " m

However, in the computational grid Af = An = Az = 1 so that we have

CFL

A, + A+
3 n

At =

m m Cm

The eigenvalues, xi, are (see equation (9))

e

1
Ak = kxu + kyv + kzw = ek, K

= ek + c|Vk|
and the maximum absolute value will always be |ek| + clel 80 that

CFL
E(Iekl + c|k|)

At = K = E,n,C (30)
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This is the expression by which the time step is evaluated in the program.
Returning to the computational procedure we see that the 5x5 system of

equations at each grid point requires a determination of the flux Jacobian
matrices (A*,A”,+++,C7), the time step At and the residuals R®. The
residuals, in turn, require determination of the two-point extrapolated
Q's, the flux vectors (F+,F_,---,H_), and the sum of the difference opera-
tions (51F++---+6kH_). With these quantities determined the system can be
solved.
The calculations thus proceed as follows.

1. two point extrapolated Q's

2. eigenvalues

3. flux vectors

§, sum of flux vector differences

5. time step

6. flux Jacobian matrices

7. coefficient matrix of left hand side

8. 1lower/upper decomposition of left hand side coefficient matrix

9. sum of right hand side terms

10. solution of the system by forward or backward substitution
11. update Q's

Supporting Calculations

The above procedure constitutes the essential function of the computer
program. Additional computations and operations are required, however, to
obtain a complete solution. These additional steps include establishing

the initial flow conditions, computing the metrics (that is, the dimen-
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sions) of each cell, enforcing boundary conditions, determining the vis-
cous influence and presenting the results in a meaningful manner. Brief
descriptions of some of these steps follows.

The boundary conditions at the far field boundary and the body surface
are enforced using characteristic variables and phantom points as devel-
oped in Ref. 1. In a manner similar to the +/- flux vector splitting this
method takes advantage of the natural signalling processes (information
propagation) in the flow to more correctly determine conditions on the
exterior and interior surfaces of the computational domain. The eigen-
values are used to determine whether information propagates into or out
of the computational domain and also to provide expressions for the flow
variables at the boundaries. Phantom points (fictitous points which are
immediately exterior to far field boundaries and immediately embedded
inside so0lid bodies) facilitate the computations near the boundaries.,
Through extensive numerical experimentation the combination of character-
istic¢c variable boundary conditions and phantom points appears to provide
more efficient and accurate evaluation of the boundary conditiona than
other techniques such as extrapolation, zero pressure gradient and use of
the normal momentum equation,

The only metrics required in this computational solution to the Euler
equations are the area vectors of the grid cell faces. These vectors have
components J(kx,ky,kz,) where k = £,n,5. For example, an is the z compo-
nent of area for an n = constant face of a cell. The total area of a cell
face is J|Vk|; for example, J |Vn| is the total area of an n = constant

face. The area vectors are computed as the cross product of the diagonals
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of each face. Also computed are the direction cosines of each component

of the area vector, which are (Ex,ﬁy,kz) = (kx,k ,kz)/IVkl.

y

Initial conditions are prescribed as freestream conditions everywhere.
The flow variables are made non-dimensional using p, and c,. A perfect

gas is assumed. The freestream pressure is

which, when made non—-dimensional with pwcmz, is

1
Pe = ¥~ (312)

The freestream energy (internal, chm, plus kinetiec, % qf) per unit volume

where q ~ = u =~ + v =~ + W

Using pmcm2 to non-dimensionalize and recognizing Mm2 = qmz/ci gives

M (31b)

Numerical Properties

The scheme as described is implicit, upwind and finite volume. First

order differencing is used in the left—hand side matrix operator which
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implicitly operates on the dependent variable difference AQ®. This yields
second-order accuracy 1in space. For consistency, second8order differ-
encing is used in the residuals on the right-hand side such that the
overall scheme is second-order accurate in space.

Because only steady state solutions are of concern here local time
stepping and first-order temporal differences are used.

The upwind character of the solution scheme precludes the necessity of
adding artificial dissipation to damp oscillations as is commonly required
in central difference schemes.

Analysis of a scalar equation and a system of equations(1u) shows that
the present scheme is conditionally stable. The practical limit for CFL
number is approximately 20, although under certain flow conditions much

higher CFL numbers are possible.
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IV. Viscous Calculations

Viscous effects are determined through the use of an inverse integral
method for computation of turbulent compressible boundary layers. The method is
referred to as integral in that the fundamental basis of the calculation is in-
tegration of the momentum and kinetic energy equations. Use of a prescribed
displacement thickness distribution in place of the more usual prescribed pres-
sure distribution as part of the input to the solution gives rise to the inverse
nature of this method. The influence of the boundary layers is imposed upon the
external inviscid flow by a surface source model in which the veloecity normal to
solid surfaces induced by the viscous displacement thickness acts as the effec-—
tive strength of an inviscid source distribution on the solid surface. In the
present application the viscous calculations are along two-dimensional strips;
no explicit spanwise calculations are performed. A full description of the pro-
cedure appears in references (10,11,12).

Central to this scheme is the representation of the turbulent boundary
layer by an analytical expression for the velocity profile. This analytical
expression, developed from curve fits to experimental data, is applicable to
both attached and mildly separated compressible turbulent boundary layers. From
this expression the various boundary layer length scales, the skin friction and
the dissipation can be obtained. The velocity profile used here is actually for
the equivalent incompressible viscous flow. The compressible flow properties
are determined from correlations of the three compressible shape factors and
skin friction with the incompressible shape factor and boundary layer edge Mach

number. These correlations are also based on curve fits to experimental data.
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The basic governing equations for the particular inverse integral method
used here are those for momentum and mean-flow kinetic energy. With suitable
algebraic manipulations, these two equations become a coupled pair of first or~
der ordinary differential equations for H (the incompressible shape factor) and
Me (the edge Mach number). The equations contain the four compressible length
scales, along with M,, cg (the skin friction coefficient), and D (the dissipa-~
tion integral). With the analytic velocity profile, the correlations and the
displacement thickness distribution (from the previous viscous solution) known
the pair of differential equations can be solved for the unknowns ﬁ and Me. In
order to evaluate the dissipation integral the Cebeci-Smith two-layer eddy vis-
cosity turbulence model is used for 1 while the velocity profile provides
duw/dy. The actual solution of the system is obtained through a fourth order,
four stage Runge—Kutta routine.

The solution procedure for a given viscous calculation begins with input of
i, u.

, Re, (the equivalent incompressible shape factor, friction velocity and
e 8

Reynolds number based on 8§, the incompressible momentum thickness) to the main
viscous subroutine (SOURCE). These input quantities come from the previous vis-
cous cycle. Also input are the conserved dependent variables (p, pu, pv, oW,
e). A sequence of steps follow which lead to a new or updated veloecity profile.
This profile is then used in the solution of the coupled pair of differential
equations for H and M,. Also required in the solution for Hand M, is &, the
displacement thickness distribution. The displacement thickness for the current
viscous calculation is obtained by multiplying the thickness from the previous
calculation by the ratio of the previous edge velocity to the previous invisecid
surface velocity magnitude. (On the very first viscous pass, the solution is

started by specifying the location and displacement thibkness at the locations
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of boundary layer transition and computing a flat plate turbulent boundary
layer.) With the 6* distribution available updated values of H and M, are de-
termined. The new values of H and Me distributed along the body can then be
used with the correlations to obtain distributions of all of the actual compres-—
sible properties of the boundary layer.

Among the compressible properties determined in the above procedure is the
mass flux defect, peueé*, created by the boundary layer. The usefulness of this
property 1s apparent if we integrate the differential continuity equation; the

result is
d *
(pv)p = 35 (PeUed )

where (pv)n is the mass flux per unit area normal to the surface induced by the
boundary layer and x is the streamwise coordinate. With respect to the external
inviscid flow, the influence of the boundary layer is to displace the stream-
lines away from the body. This displacement 1is equivalent to superimposing a
mass flux, which is equal to the mass flux defect, normal to the body surface.
The quantity (pv), is precisely this normal mass flux. Thus the distribution of
peues* provides the means to determine the viscous influence on the inviscid
flow, or, in other words, to determine the viscous—inviscid interaction. The
normal mass flux applied in the solid wall boundary conditions may be inter-
preted as a surface source strength. An alternate interpretation of (pv)n is
that it represents the porosity of the surface. The boundary condition routine

in this program includes (pv)n in the characteristic variable solid wall compu-

tations,
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Subroutines

V. Program Details

The solution procedure is directed by a single calling subroutine, STEP,

Some computations are performed in STEP but its main purpose is to call the

proper sequence of subroutines to perform the requisite calculations. Perhaps

the best way to briefly describe each subroutine is to put each into the context

of its sequence and role in the computational scheme,

The following table de—

tails, in chronological order (in the computer program), each subroutine and its

function, relevant equation or reference and primary output variables.

subroutine function

IC initial conditions

METRIC cell face area vectors

BC boundary conditions

DELQ 2 point extrapolated Q's

FLUX eigenvalues

FLUX flux vectors

DELQ residual=sum of flux vector
differences

EIGENV time step

FJMAT eigenvalues

FJMAT flux Jacobian matrices

STEP coefficient matrix of 5x5
system,

AEQLU lower/upper decomposition of

coefficient matrix of left
hand side
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equation
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32

42-47 in Ref. 1
28

9

ci6, C17

13

30

9

Appendix D
17, 19

linear algebra
text

output variables

P,PpUPV,pW,€E

pPspU,pV,pwW,e
p ’pu,pv’pw’e

)\& (k=£9ncc’
L=1,4,8)

F*,¢*,HE, at
step n

Rn, 9:=1,o--,5

At

)
Ak

A% Bt ct



boop, DOOM right hand side of 5x5 system 17, 19 —Rn+(A11x;+A12x2+
...+A15x5
DOOP, DOOM forward/backward substitution 1linear algebra AQ"
solution of 5x5 system text

STEP update Q's 20 p,pU,pV,pW, €

BC boundary conditions 42-47 in Ref. 1 p,pu,pv,pw,e
.SOURCE viscous calculation Section IV PVp

PVAR print results Cps x/c,cl,cd

Variables

As would be expected in a program designed to solve a complex system of
equations, there are a large number of variables. The names used for the vari-
ables, in most cases, are representative of the variables' physical or mathe-
matical meanings. Brief definitions of the more important quantities are pre-

sented here.

The following variables appear in nearly all subroutines,

I,J,K = £,n,z; indices for grid points

NI ,NJ,NK = number of (I,J,K) lines

R,RU,RV,RW,E,P = p,pu,pv,pw,e,p in Cartesian frame, (x,¥y,2)

X,Y,Z = grid point coordinates in Cartesian frame, (x,y,z)

AIX,AIY,AIZ = Cartesian components of the area vector of an I constant cell face

AJX,AJY,AJZ = Cartesian components of the area vector of a J constant cell face

AKX,AKY,AKZ = Cartesian components of the area vector of a K constant cell face

SADAI ,SADAJ,SADAK = magnitude of the area vectors for I,J, or K constant cell
faces

The following variables appear in only some of the subroutines:

B(L,M,N,I,J,K) = flux Jacobian matrices; L=1,6 and reférs to A™,...,C7; M=1,5

and refers to the flux vector component; N=1,5 and refers to
the dependent conserved variable; 1,J,K refer to grid location
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D(L,M,N,I,J,K) = coefficient matrix on the 1left hand side of the 5x5 systems;
L=1,2 and refers to the forward or backward passes; M=1,5 and
N=1,5 refer to the 1location within the matrix; I,J,K refer
to grid location

DR,DRU,DRV,DRW,DE = right hand side of two pass algorithm (R,X1); AQ" after two
pass algorithm

DT = time step

In DELQ,
RR,RUR,...,RWL,EL = right and left, two point, extrapolated dependent variables

XR,XRU,XRV,XRW,XE = flux vectors

In DOOP and DOOM,

T = sum of transport terms on right hand side of the 5x5 systems

Z = total right hand side of the 5x5 systems, initially; solution to 5x5 system,
finally

Y = intermediate variables in solution of 5x5 system

In FJMAT,

EV1,EV4,EV5 = eigenvalues

CG1,CG2,CG3 = switches to assign terms to appropriate (x) flux Jaccbians
AXT,AYT,AZT = Ex,iy,ﬁz
In FLUX,

EVIR,...,EVS5L = eigenvalues predicted on cell faces using right and left extra-
polated dependent variables

XR,XRU,XRV,XRW,XE = flux vectors

In EIGENV,

CONU,CONV,CONW = 8,
EI,EJ,EK = |ek| + c|vk|

DT = time step
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Input parameters (in order of read),

CFL = CFL number

FSMACH = freestream Mach number

ALPHA,BETA,PHI = roll, pitech (angle of attack) and yaw angles

NB = number of printouts

NT = number of computaﬁional cycles per printout

NV = number of computational cycles per call to viscous calculations
ITL,ITU,ILE = I values at lower and upper trailing edges and at leading edge
KTIP = K value at wing tip

X1 = array storing the computational grid coordinates

IFREQ = frequency of calls to EIGENV, FJMAT and AEQLU (not read but set in MAIN)

NI,NJ,NK = grid size (not read but set in PARAMETER statements)

Output, every 5 cycles

NCYC = cycle number
RTMAX = maximum DR

RTRMS = rms value of DR
ETMAX = maximum DE
ETRMS = rms value of DE

XL2 = sum of squares of DR,...,DE
TCL = 1lift coefficient (wing)
TCD = drag coefficient (wing)
NSUP = number of supersonic points

Output, every NT cycles

ZLOC = spanwise position

S = chordwise position

CP2 = surface pressure coefficient
CL = sectional 1ift coefficient

CD = sectional drag coefficient
TCL = wing lift coefficient

TCD = wing drag coefficient
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Execution sequence
MAIN

call IC

read input

call METRIC

call BC

call PGEOM

do 3 L=1,NB
do 2 M=1,NT
call STEP
call DELQ
call FLUX, (NK-1)*(NJ-1)+(NK-1)*(NI-1) + (NJ-1)*(NI-1)
call EIGENV, NB*NT/IFREQ times
call FJMAT, 6*NB*NT/IFREQ times
call AEQLU, 2*NB¥*NT/IFREQ times
call DOOP
call DOOM
call BC
call SOURCE NB*NT/NV times
call INVBL
call CORREL
call LININT

call RUNGE

2 continue
call PVAR

3 continue
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VI, Applications
This code has been used to compute transonic flow past a variety of
two-dimensional and three—dimensional bodies. To demonstrate the applica-
tion of the program, results from computations of a representative wide
body subsonic jet transport will be presented.

Geometry and Grid

The configuration in question is a complex wing/fuselage combination
designated for this work as the Pathfinder geometry. The wing is a high
aspect ratio, compound sweep surface with supercritical sections, span
wise washout and positive dihedral, This wing is mid-mounted on a simple
axisymmetric fuselage which has a slightly blunted ogive nose and a blunt
base without boattailing. For the computational geometry there is no
wing root fillet or fairing. A geometry very similar to this has under-
gone wind tunnel testing at NASA Langley and some results from those
experiments will be used for comparison.

To generate the computational grid the program FL0O59, authored by T.
Jameson,(13) was applied. This code is a full Euler equation solver but
also includes a grid generation package for wing/body/tail geometries,
which has been slightly modified by Dr. J. Luckring of NASA Langley and
further modified during the present work. Figures 1 through 6 show por-
tions of the grid produced by FL059 for the Pathfinder configuration.
This is a C-H grid with 97 I lines and 17 each of the J and K lines. The
lower and upper wing trailing edges are at I = 19 and 79 respectively; the

leading edge is at I = 49, The wing tip is at K = 11,
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The K = 1 surface is the plane of symmetry (z = 0) above and below
the body and lies on the surface of the fuselage, cutting through the wing
at the wing/fuselage junction., Figure 1 shows the K = 1 surface (viewed
along the z axis) in the immediate vicinity of the fuselage. The blunt
base, wing root profile and fuselage nose shape are clearly evident. An
oblique view of the K = 1 surface near the fuselage appears in Figure 2;
prominent in this figure is the rapid transition at the fuselage base of
lines on the surface to lines on the mid plane. On Figure 3 an enlarge-
ment of the wing root area (K = 1, view along z axis) is presented. The
supercritical section is clear. Two less desirable grid properties are
also apparent. There is a slight irregularity in the grid lines immedi-
ately downstream, of the trailing edge. More importantly, the cells on
the surface (upper and lower) on the aft half of the airfoil are somewhat
large; this may adversely influence computations on the compression (down-
stream facing) surfaces of the wing.

Three views of the J = 1 surface are presented in Figures 4, 5 and 6.
The entire J = 1 surface appears in an oblique view in Figure 4 where the
left-most line runs along the wing leading edge. The grid extends ap-
proximately one and one—~half semispans beyond the wing tip in the z direc-
tion and approximately one semispan downstream of the fuselage base. The
abrupt bend in the bottom most grid line is at the fuselage base. In
Figure 5 the wing is viewed along the y axis. Here the slight change in
leading edge sweep is apparent. Another oblique view of the wing, but
somewhat enlarged, is presented in Figure 6. The geometry of the trailing

edge can be more clearly discerned in this view.
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The outer boundaries of the grid are relatively near the body, being
roughly one semispan in each direction from the body. (The extent in the
y direction and ahead of the body are not shown but are about one and
one~half semispans each.) Numerical experiments have not shown any obvi-
ous adverse influence resulting from insufficient distance to the outer
boundaries although this spacing and its effects may need to be further
explored.

Calculations

Computations were performed over a range of values for the various
parameters which can be set in the code, in particular IFREQ, CFL, NV,
NB*¥NT, DST, XTOP and XBOT. The best combination to minimize machine time,
maximize convergence rate and still obtain reasonable output involved
running for 100 to 300 cycles (NB*NT) with IFREQ=9999, CFL=15 and NV
between 10 and 20. This means only one call is made to FJMAT, AEQLU and
EIGENV and from five to 30 calls to the viscous routines (when they are
used). For this combination the residuals are reduced by at least three
orders of magnitude and the 1ift is within five to ten percent of its

asymptotic value. All results presented here are for parameters in these
ranges. The examples to be presented here are for two cases with the

Pathfinder geometry: case (1), M = 0.82, a = 2°, Re6 = 9.9*106 and case

6

(2), M, = 0.70, a = 2°, Rea = 5,3%¥10°. These cases correspond to wind

tunnel experiments conducted at NASA Langley Research Center.
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Figure Ta presents computed pressure distributions for case (1) at
the 45% span location along with an experimental distribution at the 43.2%
span location position. The two curves on this figure are for an inviscid
run of 100 cycles and a viscous run of 100 cycles with five calls to the
viscous routines. For the viscous calculations the turbulent boundary
layer was begun at x/c values of 0.05 and 0.2 on the lower and upper
surfaces, respectively, while the initial displacement thickness (§*/¢c) was
0.0010 and 0.0012, lower and upper. On Figure T7a, the lower surface
agreement 1s quite good up to x/¢c = 0.8; the deviation downstream of that
point is expected in view of the relatively coarse grid. On the upper
surface, the leading edge suction peak is properly computed and the basic
character of the recompression 1is represented by the calculations. The
shock, however, is not accurately captured. This may be a consequence of
the coarse grid.

Distributions at other spanwise locations for case (1) appear in
Figure Tb=f. The agreement between experiment and calculation deterio-
rates as the root and.tip are approached. The nature of the distributions
outboard of the 45% location suggests that the wing twist is not correctly
modelled. There is progressively too much upper surface expansion and too
little lower surface expansion as the tip 1is approached which indicate
that these sections are at too high an angle of attack., At the root there
is 1insufficient upper surface expansion indicating that the angle of
attack is not large enough. It is most likely that angle of attack is not
the only problem at the root. The interaction between the fuselage and

wing is probably not being adequately computed also.
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As an example of the influence of angle of attack, Figure 8 is pre-
sented in which viscous runs (same parameter values as in Figure 7) for
three angles of attack are compared. It should first be observed that the
experimental angle of attack is 2° but that the results in Figure 7 are
actually at 2.5° as this gives reasonably good agreement at the 45% span
position. Figure 8 shows computations at 2°, 2.3° and 2.6°. At the
outboard sections, the tip in particular, the calculations more closely
match the experimental results as the angle of attack is decreased. The
trend is reversed at the inboard sections. These results further support
the idea that the wing twist is not correct.

Results for case (2) appear in Figure 9, where the computations are
viscous and were run for 250 cycles with NV=10., The agreement here is
good except at the most inboard section. A spanwlise variation which is
probably due to incorrect twist is still detectable but, overall, the

calculations quite satisfactorily predict the flow.

VALiod Wl

Conelundi ng Remar!

Development and application of a code to accurately compute
three-dimensional, transonic flow with viscous effects is not a simple
matter as the preceding discussions hopefully show., The emphasis during
this research has been to concentrate on refinement of the numerical
scheme with particular attention paid to improving the computational speed
and eliminating numerical oscillations. Both of these goals have been
closely approached, if not fully met. However, there is clearly much that
still needs to be addressed. An improved and finer mesh 1s obviously
necessary to obtain accurate flow predictions. The grid size chosen here

was dictated primarily by economy rather than accuracy. A fully three-
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dimensional viscous calculation scheme should be implemented in order to
accurately compute root and tip flows. Multi-grid and block schemes and
adaptive grids should also be considered.

Although many improvements can be made, the code as described here is
an effiecient and robust Euler equation solver, relatively easy to use and
with reasonable accuracy with a coarse mesh. When coupled with a well-
developed computational grid this program, in its present form, should
prove to be a useful tool for engineering calculations of three-dimen-

sional, high Reynolds number, transonic flow.
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Appendix A, Coordinate Transformation

The steps required to transform the Euler equations from Cartesian to
curvilinear coordinates are described here(z). The logic behind this proce-
dure may be more clear if it is realized that the main purpose of this
transformation 1is to replace all Cartesian derivatives with curvilinear
derivatives.

The Euler equations in Cartesian coordinates are in the form

Qg + £+ gy * h, =0 (A1)
Consider (£, n, z) = function (x, y, z, t),

(x, ¥y, z) = function (¢, n, ¢, t) and t = 1.

Cartesian derivatives are then

9 3 3 9 3
R R A R L I N
(A3)
3 ] 9 3 9_
3x © Tx 3 T % 3% "% Y%kt o’ ete.
and curvilinear derivatives are
3 9 9 3 9
FEa tT 3t * x; 9xX ¥ Ve 5; ¥ zr oz
(AY4)
3 3 ] 9 .
% tgar T eax T Yeay P az v ote
Substitute (A3) into (A1), realizing t = 1 = f(x, y, 2) gives
q. * thg *onea, t %9, + Exfg + nxfn + cxfc
(45)

+ + + r h + h. + h + = 0
Eygg nysn cy z g, et onhy czsc
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At this point we have curvilinear derivatives of the dependent vari-
ables and flux terms (q, £, g, h) but we still have Cartesian derivatives of
the independent variables (£, n, 7, 1). We must, therefore, find expres-
sions for the Cartesian derivatives in terms of curvilinear derivatives., To
do this first write equation (4) in matrix form

[curv deriv] = [J] [cart deriv] (A6)
and realize that the determinant of the coefficient matrix, |[J]| is the

matrix Jacobian, here denoted simply as J,

J = - . - + - A
XE(ynzc znyc) ya(xnzc znxc) za(xnyc ynxc) (A7)
Multiplying (A6) by [J1™! gives the desired relation
[cart deriv] = [J]7' [curv deriv] (A8)
Apply (A8) to gy, Eys €tc. to give
Bg = TXebx T Viby T 245,
(A9)

= g1 -
Ex = 9" (¥u2; = z¥,), and so on,
Before equations (A9) are used in equation (A5), a simplification is

possible. This simplification is achieved by multiplying (A5) by J and

using the product rule for derivatives in the following particular form.
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3 -c o
Ik =5 (kac] C 5 (ka) (A10)

wlw
by @]

where k = (§, n, g, ©), m= (x, y, 2, t) and C = (q, f, g, h), respectively.

Doing so yields an equation of the form

2

d 1,09
37 [a + sz lolea+regrregregn)]® + 3 + 4

13

)

- q [&- 3 3 9 5
a [57 )« 37 (g + 57 Wnp) + 57 Gyl

(A11)

- [2 3 2 6
£l5p Gg) + 57 Unp + 57 Wedl° v 7+ 8

Terms 3 and 4 are just like 2 but with n or ¢ replacing £. Similarly, terms
7 and 8 are like 6 both with g and y or h and z replacing f and x.

The bracketed quantities in terms 5 through 8 of this equation are the,
so-called, invariants of the transformation and are zero. This can be shown in
a 'brute force' sort of way as follows. Consider the bracketed quantity in

term 6:

9 ° )
3% (JEX) * I (Jn_) + b (JCX)

chain rule

) oJ 9 od ) 3J
=Jd 3 I &y 3 +J I % *on, n +d A Te by T
rearrange
) ] ] 9J 9J 9J
= J(a—g- Ex + sﬁ nx + a—z;- cx) + Ex a—g- + ‘nx —a—n + ;x s-z

change order of differentiation and use (A3)

g—ga+a—n+a—c)+—J

3
=J 5% an 3z

b7



evaluate

a a— — . o0
=J 5 (3) 5 (xg(ynzC y.2,) * )

=0 + 0 (if change order of differentiation).

Terms 5, 7 and 8 behave similarly.

Equation (A11) is now of the form

where Q = Jq, F = J(g,q + E,f + £y8 * Ezh)

G = J(nga + nyf + nyg + nyh), H = J(gpq + g,f + 18 + g,h)

(A12)

(A13)

The quantities g, £y, °°°, Tys Gy can be replaced by equations (A9) to

finally yield an expression entirely in terms of curvilinear derivatives,

and the transformation is thus complete.
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Appendix B. Equation Hierarchy

Equations (16) and (18) actually represent systems of equations imbedded
in a system of equations. That is what is meant, for example, by the descrip-
tion that (16) is a lower block bidiagonal system. The block is, itself a
system of equations. To show this clearly, let us consider a different fac-
torization of equation (12) which will yield the same hierarchy of systems as
in (16) and (18) but with fewer terms. The structure of the systems will then
not be obscured with lengthy expressions.

Equation (12) can be factored as
(1 + AraiAf)(I + a8 A%)(T + Arajsf)(l + AsjBT)(I + 5kcf)(1 + skCT)AQn =

-AtR" (B1)

and solved in a six step scheme

1

(1 + AraiAf)x = ~AR"

(1 + AraiAT)x2 = X

(B2)

"
>

(1 + Arakc?)x6

aQ" = x®

The motivation for this factorization and scheme and the solution process are
exactly the same as described for equations (13) and (14).
Let us consider the first equation in (B21),

I+ ats. A% )X = x' + ats, (a%x,) = -atR" (83)
i i 1
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and write out the difference operator with indices as described for equations
(16) - (19).

1 +
Xkt at[A"(Q

1

n 1 n
1-1, 3,611, 5 ,0650-1, 3,k

1,5,6791,3,6%1, 3,k

- at[a*(q

n
-ARD BY
5,k (B4)

We must realize several facts concerning equation (BY4) and its notation. The
(1,j,k) subscripts refer to spatial location, the 1 superscript to the solu-
tion pass and the n superscript to the time level. In addition, at each
(i,3J,k) location there are 5 distinct Q" (representing p,pu,pv,pw,e) and

+

consequently 5 distinet f . Finally, A+ denotes %%& so that there are 25 A+
m

terms since there are 5 flux vectors F;.
To display the structure clearly, suppose there are only 6 cells in the i
direction. Also suppose we are evaluating (B4) along a line of constant j and

k so that the (j,k) indices can be dropped. Further, let us drop the super-

scripts for this example and finally let A stand for AtA*. Then (BY) becomes

X, * AXy - A X, o= - ARy with 1 = 2,6 (B5)

Writing (B5) out gives

X, = X,
- A X, ¥ (1 + Az)x2 = AR,
- Ay X, * (1 + A3)x3 = ~4TR,
- Ay Xy (1 + Au)xu = -AR),
- Ay Xt (1 + ASJXS = -AR,
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- A x_+ (1+ A6)x6 = -ATR

575 6
or, in matrix form
1] X, ]
1
1 0 0 0 0 0 X1 v
A1 1+A2 0 0 0 0 X2 R2
0 A 1+A 0 0 0] X = -At| R
2 3 3 3 (B6b)
0 A 1+Au 0 0 Xu Ru
0 0 A 1+A5 0 X5 R5
0 0 0 0 A5 1+A6 X6 L§6
b a— NE— —

The lower bidiagonal form of (B6b) is now clear. Remember that the subscripts
1 through 6 here refer to spatial locations.

Now let us consider the details of any one of the equations in (B6a) or
(B6b). That is, we now have a fixed value of i and therefore are considering
a particular location in space. Since (B5) represents a typical equation in

(B6), we can use (B5) realizing that i is fixed and rearrange to give
(1 + Ai)Xi = -ARy + AL LX (BT)

But, at each i there are 5 distinet components of X (say, Xg 2 = 1,5) and 25

distinct A terms. Thus (B7) actually expresses the following matrix equation

. —r - -
ALy Ao Byg Ay A i _R1i+(A11x1+A12X2+A13X3+ Ay yXyths%s )i
A21 1+A22 e & @ x2 Y
B8
. x3 . (B8)
- =A‘[‘
- xu °
A51 * o o 1+A55. x5. —R5.+(A51x1+ A52x2+A53x3+A5uxu+A55X5)i_1
__ AL !
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Here the number subscripts refer to the dependent variables (Q1,QZ,Q3,Qu,Q5) =
(p,pu,pv,pw,e) while the 1 subscripts refer to the location, which is now
fixed. So, each equation in the factored scheme (B2) represents a system of
equations (B6b) over space. Each equation in system (B6b), in turn, repre-
sents a system of equations (B8) over the dependent variables. This last
system (B8) is the "block" in the block bidiagonal descriptor. Notice that
this system (B8) is similar to system (8) in the main text.

The procedure described above would be carried out for each of the six
steps in system (B2), with appropriate care in evaluating the difference
operators as described for equations (17) and (19). As a note, the six step
scheme of (B2) satisfactorily provides solutions to the Euler equations. It
requires more computation than the two step scheme in the present program but
requires less memory and thus is advantageous when memory limitations are
significant.

Relating these ideas back to the present scheme, we see that equations
(14) correspond to (B2), equation (16) to (B4), and (17) to (B7). Thus, the
first equation in the factored scheme (14) represents a lower block bidiagonal
system of equations, (16). Each equation in system (16), in turn, represents
a system of equations (17) over the dependent variables for fixed (i,j,k). In
a similar fashion, the second equation in (14) represents an upper block
bidiagonal system which is expressed in equation (18). For fixed (i,j,k) each
equation in system (18) represents a system of equations, represented by

equation (19), over the dependent variables.
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Appendix C. Eigensystems of the Transformed Euler Equations

The development of the eigenvalues, eigenvectors and split flux vec~
tors of the transformed Euler equations is briefly presented here. This presen-
tation will be in condensed notation to emphasize the essential steps, Details
of the development, particularly in regard to the actual elements in the various
matrices are available in References 1 and 2. In addition, several theorems and
operations of matrices and linear algebra are required and these are documented
in any quality text on linear algebra or numerical analysis.

To aid in the description it is helpful to first define some notation.
Certain terms represent any one of three terms depending on the direction (in

computational space) of interest. These are

k = £,n,z = curvilinear directions
K = F,G,H = flux vectors (see equation (2) in main text)

K = 3K = A,B,C = flux Jacobian matrices, where the Q are the dependent

3Q variables in the conservative form of the Euler equa-
tions (eqn (2))

Kk = a,b,c = coefficient matrices for the nonconservative Euler equations

Typically these are used such that when k = g then K=F, K=A and k=a, and so on
for k=n and k=¢. Another item of notation here is that when (t,£,n,3) appear as
subscripts they refer to derivatives (3/3t, 9/3g, 9/9n, 3/3%). similarly,
(x,y,2z) subscripts mean (3/3x, 8/3y, 9/3z). All other subscripts will not indi-
cate differentiation.
We may now proceed with the development. The starting place is the Euler
equations in conservative form and in curvilinear coordinates,
Q + Fg+ Gy +H =0 ' (c1)

This can be written in the quasilinear form
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Q + AQE + BQn + CQC =0 (c2)
where, recall, A = 3F/3Q, B = 3G/3Q, C = 3H/3Q are terms of K.

With the governing equation written as (C2) the eigenvalues of the govern-~
ing equation are, in fact, the eigenvalues of the flux Jacobian matrices K. How-
ever, when K is actually written out (see Appendix D) it is seen that there are
very few zero elements in K and consequently that it would be a difficult task
to extract the eigenvalues of K. To find the eigenvalues, a similarity trans-
formation (that is, one which preserves the eigenvalues) of K is sought which
yields a matrix with many more zero elements and hence makes extraction of the
eigenvalues of Kmore tractable. This transformation is achieved by considering
the nonconservative form of the Euler equations

Qp * aqg + bg; * cq, = 0 (€3)
where q = J[p,u,v,w,p]T.

Now (C2) can be written as

Mg, + AMqE + Bqu + CMqC =0 (Ch)

where M = 3Q/3dqg.
Multiply (Cl) by M to give (with I = identity matrix)

Iq, + 1~/1“AMqE + M7TBMg, + M-1Cch =0 (c5)
Comparing (C3) and (C5) we see that

a=MTaM, b=MloM, ¢ =M TcH (C6a)
and, therefore, k = M"RM, K = McM | (C6b)
Equation (C6b) is the required similarity transformation. The matrices K and «

are similar and therefore have the same eigenvalues. Writing out k we have
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8y pkx pky pkZ 0 yhere ek=kxu+kyv+kzw
0 8, 0 0 K/ pc? = Y((Y-1)e-p¢)
c= |0 0 8 0 K p=1 (u2+v2ru?) 1)
k y/p 2
0 0 0 CIR kz/p
2 2 2
LP kxpc kypc kzpc 6k__
The eigenvalues, Ay» are found from the solution of
|« - ka|= 0 (C8)
and are
1232233 4 5 2 -
A= Ao = AL = 8, A= 0 * c|Vk|, A7 = o - c]|Vk]| (C9)

: 2 2 241/2
with |[Tk| = (k% + k§ + k3)'7<.
The eigenvalues have been found and now the task is to find the eigen-

vectors of K. The eigenvectors, Tk' corresponding to the eigenvalues are such

that

K o= T AT, (C10)
where Ay is the diagonal matrix whose diagonal elements are the eigenvalues,
(C9). To determine Tk’ consider a similar expression for «

€ = PLA P (c11)
The matrix Pk is also composed of eigenvectors corresponding to the eigenvalues
(C9). Here the columns of Pk are the right eigenvectors of x, each column being
a linearly independent set of eigenvectors. These eigenvectors are normalized

such that multiplying the matrix of the right eigenvectors times the matrix of

the left eigenvectors gives the identity matrix. (As explanation, given a ma-
trix [A] and [A]x., = Ax,. then A is an eigenvalue and X, is the corresponding

right eigenvector. Similarly given [A] and xy[A]=xgA then A, again, is an eigen-
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value and Xq, is the corresponding left eigenvector.) It 1s much easier to find
Pk (refer to a good linear algebra text), than Tk‘ Once P, is found then Tk can
be readily obtained by:
from (C6b) K = McM™' and using (C11) then, K = MP AP, M
so that T, = MP,, Ty = M 1P} (c12)
The eigenvalues and eigenvectors of the flux Jacobian matrices are now
available in (C9) and (C12). It remains to obtain the flux vectors as a linear
expansion in the eigenvalues (egqn (10)). Because the flux vectors are homogene-
ous of degree one in the Q's we can write, by invoking Euler's Theorem
K = KQ (c13)
(Essentially, a homogeneous function f{x), say, of degree n is one such that
f( ax) = a”f(x) where a is a constant. Euler's Theorem essentially says that for
f(x) continuously differentiable and homogeneous of degree n, then x df/dx = nf.
These ideas can be extended to functions of several variables.)
Using (C10) in (C13) gives
K = T, AT;'Q (C14)
We can write the diagonal matrix Ak as the sum

1 b 5

where I1 2,3 is a matrix with 1 as the first 3 diagonal elements and O
? ?
elsewhere, Iu has 1 as the fourth diagonal element with 0 elsewhere and

I5 has 1 as the fifth diagonal element with 0 elsewhere. Then

L -1 4 -1 5 -1
K = AkaI1’2’3Tk Q + AT I, Q+ AkaISTk Q (Ci6a)
=tk o+ atk, + Ak (C16D)
k™ k2 k™3
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Equation (C16) is the expansion of the flux vectors in the eigenvectors and is

the desired split form. When the details of K1,K2 and K3 are determined we fi-

nally have
r —_
pu
Y-1
K1 =d = pv
pwW
pd
L(Y-l)
where (kX’ky'kZ'ek) = (k

(CT).

xl y!

s —

p
putpcky

pv+pcky

pw+pckZ

. l—e+p+pcgk
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p
pu-pcky
pv-pcﬁ

y

pw-pckz

e+p—pc§k

1

kz,ek)/IVk| and ¢ and 6, are defined with equation



Appendix D. Evaluation of the Flux Jacobian Matrices

The dependent variables of the conservative, transformed Euler equations

are
Q=Qp m=1,5=Jd[p,oupv,ow,e]T = [Jp,Jpu,dpv,Tpu,de]T (2)

The flux vectors are K = F,G,H and are given by
_ 41 h 5
K= 2Ky *+ AKy + ApKg (C16Db)

where the subvectors K, , 3 are given in equation (C17) and AL,U,S are given by
’ 9
equation (C8). The flux Jacobian matrices are formed by differentiating K with

respect to Q,
Agm = 9F¢/3Qy, By, = 3Gg/3Q;, C = 3H,/3Q (6b)

In order to carry out the differentiations, it is necessary to write the flux
vectors explicitly in terms of the conserved variables, Q. For example, the

second element in the K2 subvector, K22, is
Koo = %7 (pu + pcix) = %V(qu + Jpcix) (c17)
Now, from (C7)
pc? = Y((*-1)e = po) = Y(¥=1)(e = 5 p(i + 2 + w?))
and we can write
dpe = (Jp*Jp02)1/2 = (Y(Y—1))1/2(Jp * J(e - % p(u2+v2+w‘2))1/2 (D1a)

or
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Joe = (YO=1)V2(prae = 1 (w2 + (o) + (Fpw)2N)1/2 (D1b)
= r-1"200)05 - 33 + €+ N2 (using (2)) (D1c)

So, K22 becomes
Koo = 33(Q + (r(-1N12(qqa5 - (a5 + & + N2 iy (p2)

We now turn our attention to Aﬁ,

n
A = By *+ efVk| = keu + kyv + kw + [Tk o Ec' (D3a)
1
=T (keJpu + kyJov + k,Jow + |Vk|Jdpe) (D3b)
Using (2) and (D1e) in (D3b) gives
4
Ay = %T<kxaz+kyo3+kzou+IVk|(Y(Y—a))”2<o1os - 3 (Q5+a5+ N3 (D4)

Finally, to construct the contribution of K22 to K we must multiply (D2) and
(DU4) together. Clearly, the contribution is a lengthy expression. Moreover,
this product is only one of the fifteen terms which compose K from (C16b). Suf-
fice to say, the total expression for K is quite involved.

Once all fifteen terms of K are constructed, in the manner described above,
the derivatives with respect to the five Q's can be obtained. Now, we must re-
member that the solution algorithm is based not only on splitting the flux vec-
tors into terms with eigenvalues as coefficients but the fluxes are further
split according to the sign of the eigenvalue, as expressed in (10c¢). The flux
Jacobians are correspondingly split, as in (11). Consequently the fifteen terms
of K must be separated into terms with positive and negative eigenvectors; dif-

ferentiation then yields the appropriate flux Jacobian matrices Ai, B* and c*.
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In the program the derivatives of all fifteen terms for each of A, B and C
are computed. Coefficients of either 1 or 0 are then assigned to each deriva-
tive according to whether the corresponding eigenvalue is positive or negative
and which flux Jacobian, the plus or minus, is being evaluated. This procedure

is organized in an efficient and orderly, although quite lengthy, scheme.
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